Como encontrar o centro de uma circunferência

Utilizando geometria analítica é possível encontrar o centro de uma circunferência recorrendo às coordenadas de três pontos pertencentes a ela.

O círculo é uma figura geométrica plana definida como a região limitada por uma circunferência. A circunferência, por sua vez, é um conjunto de pontos equidistantes de um outro ponto chamado centro. A distância entre o centro de uma circunferência e um ponto qualquer pertencente a ela, portanto, é sempre a mesma e é chamada de raio.

A partir dessa definição, e utilizando geometria analítica, é possível encontrar a equação reduzida da circunferência.

(x – a)² + (y – b)² = R²

Essa equação envolve um ponto P(x,y) pertencente à circunferência, o centro C(a,b) e o raio (R).

A figura acima mostra que é possível desenhar infinitas circunferências por meio de apenas 2 pontos, para tanto, é necessário saber a localização de pelo menos três pontos, sejam todos eles pertencentes à circunferência ou apenas dois pertencentes a ela mais o centro.

Para encontrar o centro de uma circunferência, basta saber a localização de três pontos pertencentes a ela. Por exemplo:

Os pontos destacados na circunferência são A(1,1); B(3,1) e C(3,3) e seu raio mede 1,41 cm. Para encontrar o centro D(x,y), é preciso montar o sistema de equações:

I) (1 - x)² + (1 - y)² = 1,41²

II) (3 - x)² + (1 - y)² = 1,41²

III) (3 - x)² + (3 - y)² = 1,41²

Desenvolvendo a primeira e a segunda equação do sistema acima, teremos:

I) 1 – 2x + x² + 1 – 2y + y² = 1,41²

II) 9 – 6x + x² + 1 – 2y + y² = 1,41²

Diminuindo a equação I pela equação II, obtemos:

8 – 4x = 0

8 = 4x

x = 8
     4

x = 2

Caso sejam desenvolvidas as equações II e III, os resultados serão:

II) 9 – 6x + x² + 1 – 2y + y² = 1,41²

III) 9 – 6x + x² + 9 – 6y + y² = 1,41²

Diminuindo III por II:

8 – 4y = 0

8 = 4y

y = 8
     4

y = 2

Portanto, o par ordenado onde se encontra o centro dessa circunferência é D(2,2)

Resumindo: Para encontrar o centro de uma circunferência, basta escolher três pontos conhecidos pertencentes a ela, substituir suas coordenadas na equação reduzida da circunferência de modo que o primeiro ponto forme uma equação, o segundo ponto forme uma segunda equação e o terceiro ponto uma terceira equação. Depois disso, considere essas três equações como um sistema e resolva-o. Esse procedimento é indicado para encontrar o centro de uma circunferência.


Por Luiz Paulo Moreira
Graduado em Matemática

Três circunferências desenhadas utilizando apenas dois pontos
Três circunferências desenhadas utilizando apenas dois pontos
Deseja fazer uma citação?
SILVA, Luiz Paulo Moreira. "Como encontrar o centro de uma circunferência"; Brasil Escola. Disponível em: /matematica/como-encontrar-centro-uma-circunferencia.htm. o em 15 de junho de 2025.

Vídeoaulas